home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Language/OS - Multiplatform Resource Library
/
LANGUAGE OS.iso
/
lisp
/
eulisp
/
comp0_89.lha
/
Feel
/
Boot
/
Compiler
/
boyer.em
< prev
next >
Wrap
Lisp/Scheme
|
1993-04-26
|
14KB
|
609 lines
;; $aclHeader: boyer.cl,v 1.3 90/10/16 11:59:14 layer Rel $
;;; BOYER -- Logic programming benchmark, originally written by Bob Boyer.
;;; Fairly CONS intensive.
(defmodule boyer
((except (member assoc)
standard0)
plists)
()
(defun assoc (a l p)
(cond ((null l) nil)
((p a (car (car l)))
(car l))
(t (assoc a (cdr l) p))))
(defun member (a l p)
(cond ((null l) nil)
((p a (car l)))
(t (member a (cdr l) p))))
(defun add-lemma (term)
(cond ((and (not (atom term))
(eq (car term)
(quote equal))
(not (atom (cadr term))))
((setter get) (caadr term) (quote lemmas)
(cons term (get (caadr term) (quote lemmas)))))
(t (error "~%ADD-LEMMA did not like term: ~a" term))))
(defun add-lemma-lst (lst)
(cond ((null lst)
t)
(t (add-lemma (car lst))
(add-lemma-lst (cdr lst)))))
(defun apply-subst (alist term)
(cond ((atom term)
(let ((tmp (assq term alist)))
(if tmp (cdr tmp)
term)))
(t (cons (car term)
(apply-subst-lst alist (cdr term))))))
(defun apply-subst-lst (alist lst)
(cond (lst
(cons (apply-subst alist (car lst))
(apply-subst-lst alist (cdr lst))))
(t nil)))
(defun falsep (x lst)
(or (equal x (quote (f)))
(member x lst equal)))
(defun one-way-unify (term1 term2 **unify-subst**)
(progn ((setter car) **unify-subst** nil)
(one-way-unify1 term1 term2 **unify-subst**)))
(defun one-way-unify1 (term1 term2 **unify-subst**)
;;(format t "Unify: ~a ~a~%" term1 term2)
(cond ((atom term2)
(let ((tmp (assq term2 (car **unify-subst**))))
(if tmp
(equal term1 (cdr tmp))
(progn ((setter car) **unify-subst** (cons (cons term2 term1)
(car **unify-subst**)))
t))))
((atom term1)
nil)
((eq (car term1)
(car term2))
(one-way-unify1-&lst (cdr term1)
(cdr term2)
**unify-subst**))
(t nil)))
(defun one-way-unify1-&lst (lst1 lst2 **unify-subst**)
(cond ((null lst1)
t)
((one-way-unify1 (car lst1)
(car lst2)
**unify-subst**)
(one-way-unify1-&lst (cdr lst1)
(cdr lst2)
**unify-subst**))
(t nil)))
(defun rewrite (term)
(cond ((atom term)
term)
(t (rewrite-with-lemmas (cons (car term)
(rewrite-args (cdr term)))
(get (car term)
(quote lemmas))))))
(defun rewrite-args (lst)
(cond (lst
(cons (rewrite (car lst))
(rewrite-args (cdr lst))))
(t nil)))
(defun rewrite-with-lemmas (term lst)
(let ((**unify-subst** (cons nil nil)))
(cond ((null lst)
term)
((one-way-unify term (cadr (car lst)) **unify-subst**)
(rewrite (apply-subst (car **unify-subst**) (caddr (car lst)))))
(t (rewrite-with-lemmas term (cdr lst))))))
(defun boyer-setup ()
(add-lemma-lst
(quote ((equal (compile form)
(reverse (codegen (optimize form)
(nil))))
(equal (eqp x y)
(equal (fix x)
(fix y)))
(equal (greaterp x y)
(lessp y x))
(equal (lesseqp x y)
(not (lessp y x)))
(equal (greatereqp x y)
(not (lessp x y)))
(equal (boolean x)
(or (equal x (t))
(equal x (f))))
(equal (iff x y)
(and (implies x y)
(implies y x)))
(equal (even1 x)
(if (zerop x)
(t)
(odd (- x 1))))
(equal (countps- l pred)
(countps-loop l pred (zero)))
(equal (fact- i)
(fact-loop i 1))
(equal (reverse- x)
(reverse-loop x (nil)))
(equal (divides x y)
(zerop (remainder y x)))
(equal (assume-true var alist)
(cons (cons var (t))
alist))
(equal (assume-false var alist)
(cons (cons var (f))
alist))
(equal (tautology-checker x)
(tautologyp (normalize x)
(nil)))
(equal (falsify x)
(falsify1 (normalize x)
(nil)))
(equal (prime x)
(and (not (zerop x))
(not (equal x (add1 (zero))))
(prime1 x (- x 1))))
(equal (and p q)
(if p (if q (t)
(f))
(f)))
(equal (or p q)
(if p (t)
(if q (t)
(f))
(f)))
(equal (not p)
(if p (f)
(t)))
(equal (implies p q)
(if p (if q (t)
(f))
(t)))
(equal (fix x)
(if (numberp x)
x
(zero)))
(equal (if (if a b c)
d e)
(if a (if b d e)
(if c d e)))
(equal (zerop x)
(or (equal x (zero))
(not (numberp x))))
(equal (plus (plus x y)
z)
(plus x (plus y z)))
(equal (equal (plus a b)
(zero))
(and (zerop a)
(zerop b)))
(equal (difference x x)
(zero))
(equal (equal (plus a b)
(plus a c))
(equal (fix b)
(fix c)))
(equal (equal (zero)
(difference x y))
(not (lessp y x)))
(equal (equal x (difference x y))
(and (numberp x)
(or (equal x (zero))
(zerop y))))
(equal (meaning (plus-tree (append x y))
a)
(plus (meaning (plus-tree x)
a)
(meaning (plus-tree y)
a)))
(equal (meaning (plus-tree (plus-fringe x))
a)
(fix (meaning x a)))
(equal (append (append x y)
z)
(append x (append y z)))
(equal (reverse (append a b))
(append (reverse b)
(reverse a)))
(equal (times x (plus y z))
(plus (times x y)
(times x z)))
(equal (times (times x y)
z)
(times x (times y z)))
(equal (equal (times x y)
(zero))
(or (zerop x)
(zerop y)))
(equal (exec (append x y)
pds envrn)
(exec y (exec x pds envrn)
envrn))
(equal (mc-flatten x y)
(append (flatten x)
y))
(equal (member x (append a b))
(or (member x a)
(member x b)))
(equal (member x (reverse y))
(member x y))
(equal (length (reverse x))
(length x))
(equal (member a (intersect b c))
(and (member a b)
(member a c)))
(equal (nth (zero)
i)
(zero))
(equal (exp i (plus j k))
(times (exp i j)
(exp i k)))
(equal (exp i (times j k))
(exp (exp i j)
k))
(equal (reverse-loop x y)
(append (reverse x)
y))
(equal (reverse-loop x (nil))
(reverse x))
(equal (count-list z (sort-lp x y))
(plus (count-list z x)
(count-list z y)))
(equal (equal (append a b)
(append a c))
(equal b c))
(equal (plus (remainder x y)
(times y (quotient x y)))
(fix x))
(equal (power-eval (big-plus1 l i base)
base)
(plus (power-eval l base)
i))
(equal (power-eval (big-plus x y i base)
base)
(plus i (plus (power-eval x base)
(power-eval y base))))
(equal (remainder y 1)
(zero))
(equal (lessp (remainder x y)
y)
(not (zerop y)))
(equal (remainder x x)
(zero))
(equal (lessp (quotient i j)
i)
(and (not (zerop i))
(or (zerop j)
(not (equal j 1)))))
(equal (lessp (remainder x y)
x)
(and (not (zerop y))
(not (zerop x))
(not (lessp x y))))
(equal (power-eval (power-rep i base)
base)
(fix i))
(equal (power-eval (big-plus (power-rep i base)
(power-rep j base)
(zero)
base)
base)
(plus i j))
(equal (gcd x y)
(gcd y x))
(equal (nth (append a b)
i)
(append (nth a i)
(nth b (difference i (length a)))))
(equal (difference (plus x y)
x)
(fix y))
(equal (difference (plus y x)
x)
(fix y))
(equal (difference (plus x y)
(plus x z))
(difference y z))
(equal (times x (difference c w))
(difference (times c x)
(times w x)))
(equal (remainder (times x z)
z)
(zero))
(equal (difference (plus b (plus a c))
a)
(plus b c))
(equal (difference (add1 (plus y z))
z)
(add1 y))
(equal (lessp (plus x y)
(plus x z))
(lessp y z))
(equal (lessp (times x z)
(times y z))
(and (not (zerop z))
(lessp x y)))
(equal (lessp y (plus x y))
(not (zerop x)))
(equal (gcd (times x z)
(times y z))
(times z (gcd x y)))
(equal (value (normalize x)
a)
(value x a))
(equal (equal (flatten x)
(cons y (nil)))
(and (nlistp x)
(equal x y)))
(equal (listp (gopher x))
(listp x))
(equal (samefringe x y)
(equal (flatten x)
(flatten y)))
(equal (equal (greatest-factor x y)
(zero))
(and (or (zerop y)
(equal y 1))
(equal x (zero))))
(equal (equal (greatest-factor x y)
1)
(equal x 1))
(equal (numberp (greatest-factor x y))
(not (and (or (zerop y)
(equal y 1))
(not (numberp x)))))
(equal (times-list (append x y))
(times (times-list x)
(times-list y)))
(equal (prime-list (append x y))
(and (prime-list x)
(prime-list y)))
(equal (equal z (times w z))
(and (numberp z)
(or (equal z (zero))
(equal w 1))))
(equal (greatereqpr x y)
(not (lessp x y)))
(equal (equal x (times x y))
(or (equal x (zero))
(and (numberp x)
(equal y 1))))
(equal (remainder (times y x)
y)
(zero))
(equal (equal (times a b)
1)
(and (not (equal a (zero)))
(not (equal b (zero)))
(numberp a)
(numberp b)
(equal (- a 1)
(zero))
(equal (- b 1)
(zero))))
(equal (lessp (length (delete x l))
(length l))
(member x l))
(equal (sort2 (delete x l))
(delete x (sort2 l)))
(equal (dsort x)
(sort2 x))
(equal (length (cons x1
(cons x2
(cons x3 (cons x4
(cons x5
(cons x6 x7)))))))
(plus 6 (length x7)))
(equal (difference (add1 (add1 x))
2)
(fix x))
(equal (quotient (plus x (plus x y))
2)
(plus x (quotient y 2)))
(equal (sigma (zero)
i)
(quotient (times i (add1 i))
2))
(equal (plus x (add1 y))
(if (numberp y)
(add1 (plus x y))
(add1 x)))
(equal (equal (difference x y)
(difference z y))
(if (lessp x y)
(not (lessp y z))
(if (lessp z y)
(not (lessp y x))
(equal (fix x)
(fix z)))))
(equal (meaning (plus-tree (delete x y))
a)
(if (member x y)
(difference (meaning (plus-tree y)
a)
(meaning x a))
(meaning (plus-tree y)
a)))
(equal (times x (add1 y))
(if (numberp y)
(plus x (times x y))
(fix x)))
(equal (nth (nil)
i)
(if (zerop i)
(nil)
(zero)))
(equal (last (append a b))
(if (listp b)
(last b)
(if (listp a)
(cons (car (last a))
b)
b)))
(equal (equal (lessp x y)
z)
(if (lessp x y)
(equal t z)
(equal f z)))
(equal (assignment x (append a b))
(if (assignedp x a)
(assignment x a)
(assignment x b)))
(equal (car (gopher x))
(if (listp x)
(car (flatten x))
(zero)))
(equal (flatten (cdr (gopher x)))
(if (listp x)
(cdr (flatten x))
(cons (zero)
(nil))))
(equal (quotient (times y x)
y)
(if (zerop y)
(zero)
(fix x)))
(equal (get j (set i val mem))
(if (eqp j i)
val
(get j mem)))))))
(defun tautologyp (x true-lst false-lst)
(cond ((truep x true-lst)
t)
((falsep x false-lst)
nil)
((atom x)
nil)
((eq (car x)
(quote if))
(cond ((truep (car (cdr x))
true-lst)
(tautologyp (car (cdr (cdr x)))
true-lst false-lst))
((falsep (car (cdr x))
false-lst)
(tautologyp (car (cdr (cdr (cdr x))))
true-lst false-lst))
(t (and (tautologyp (car (cdr (cdr x)))
(cons (car (cdr x))
true-lst)
false-lst)
(tautologyp (car (cdr (cdr (cdr x))))
true-lst
(cons (car (cdr x))
false-lst))))))
(t nil)))
(defun tautp (x)
(tautologyp (rewrite x)
nil nil))
(defun boyer-test ()
(let ((term
(apply-subst
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y f (times (times a b)
(plus c d)))
(z f (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b)))))
(quote (implies (and (implies x y)
(and (implies y z)
(and (implies z u)
(implies u w))))
(implies x w))))))
(tautp term)))
(deflocal ans ())
(defun boyer-short-test ()
(let ((term
(apply-subst
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y f (times (times a b)
(plus c d)))
(z f (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b)))))
(quote (implies (and (implies x y)
(and (implies z u)
(implies u w)))
(implies x w))))))
(setq ans (tautp term))))
(defun boyer-very-short-test ()
(let ((term
(apply-subst
(quote ((x f (plus (plus a b)
(plus c (zero))))
(y f (times (times a b)
(plus c d)))
(z f (reverse (append (append a b)
(nil))))
(u equal (plus a b)
(difference x y))
(w lessp (remainder a b)
(member a (length b)))))
(quote (implies x y)))))
(print term)
(setq ans (tautp term))))
(defun trans-of-implies (n)
(list (quote implies)
(trans-of-implies1 n)
(list (quote implies)
0 n)))
(defun trans-of-implies1 (n)
(cond ((= n 1)
(list (quote implies)
0 1))
(t (list (quote and)
(list (quote implies)
(- n 1)
n)
(trans-of-implies1 (- n 1))))))
(defun truep (x lst)
(or (equal x (quote (t)))
(member x lst equal)))
(boyer-setup)
;;(defvar setup-performed-p t)
(defun testboyer ()
(let ((xx (cpu-time)))
(print (boyer-test))
(- (cpu-time) xx)))
(defun testshortboyer ()
(print (boyer-short-test)))
(defun testveryshortboyer ()
(print (boyer-very-short-test)))
) ; end of module